题 目:人工智能在慢病和肿瘤诊疗中的一些应用 (Facing the global health challenges in population health and oncology via scalable AI tools)
报告人:吕 乐 教授
主持人:王 妍 教授
时 间:10月21日上午9:30
地 点:腾讯会议,会议号:785-617-027
报告人简介:
吕乐,2007年获得美国约翰霍普金斯大学计算机科学博士,从事人工智能研究26年,从2006年起,投入医学影像和临床信息学方面的研发16年。2021年因为在癌症检测和诊断方面的突出贡献当选IEEE Fellow (IEEE 计算机学会,引用数~15600次)。2017年获得美国国立卫生研究院临床中心院长奖,2015年美国国立卫生研究院年度最佳导师奖。2022年8月起担任阿里巴巴达摩院医疗人工智能团队负责人。 阿里巴巴达摩院医疗人工智能团队成员近年来在顶级临床期刊上发表Nature Communications三篇,Clinical Cancer Research, Annals of Surgery, Radiology各一篇;医学影像顶刊IEEE Trans Medical Imaging和Medical Image Analysis 近二十篇,主要涉及多种慢性病和癌症肿瘤疾病的人工智能和临床解决方案的研究。2016~2020五年间共四次获得北美放射学年会RSNA Informatics最佳论文奖,2021亚洲超声学年会青年科学家银奖,MICCAI 2018 五年最有影响力的论文奖,并在2019/2020连续两年MICCAI上被提名最佳论文奖,以及获得MICCAI 2020 NIH论文奖。发表了IEEE Trans Medical Imaging近十年来引用数最高的论文,和IEEE CVPR近十年来在医学影像方面引用数最高的论文。近五年来在人工智能计算机视觉顶会CVPR/ECCV/AAAI上发表16篇有影响力的论文,在医学影像顶会IPMI/MICCAI上发表30余篇论文。
报告内容简介:
This talk will first give an overall on the work of employing deep learning to permit novel clinical workflows in two population health tasks, namely using conventional ultrasound for liver steatosis screening and quantitative reporting; osteoporosis screening via conventional X-ray imaging and AI readers. These two tasks were generally considered as infeasible tasks for human readers, but as proved by our scientific and clinical studies and peer-reviewed publications, they are suitable for AI readers. AI can be a supplementary and useful tool to assist physicians for cheaper and more convenient/precision patient management. Next, the main part of this talk describes a roadmap on three key problems in pancreatic cancer imaging solution: early screening, precision differential diagnosis, and deep prognosis on patient survival prediction. We will also cover clinically critical topics in precision liver imaging, OPSCC prognosis and tumor treatment respond management.