讲座题目:信号处理、人工智能和诺贝尔经济学奖 – 大数据中的风险、相关性、因果性和预测分析
主讲人:张晓平 教授、加拿大瑞尔森大学
主持人:胡孟晗 副教授
开始时间:2020-11-27 10:00
主讲人简介:
张晓平教授是加拿大工程院院士。他分别于1992和1996年从清华大学电子工程系获学士和博士学位。他从芝加哥大学布斯商学院获得金融和经济学专业工商管理硕士学位(MBA)并获优秀毕业生荣誉。
张晓平院士现为加拿大Ryerson大学电气、计算机和生物工程系正教授(终身教职),通信和信号处理及应用实验室主任,并兼任Ted Rogers管理学院金融系教授。曾任系研究生和科研主管。2015和2017年任麻省理工学院电子学实验室访问科学家。他创建了金融大数据搜索和分析引擎公司EidoSerach并现任CEO。张晓平院士致力于信号处理和大数据的理论和应用研究开发,主要从事统计模型、信号处理、机器学习和人工智能、物联网和电子信息系统、生物信息及金融经济模型和大数据等方面的研发。张晓平院士是其研究领域的国际知名专家并曾在华尔街和硅谷工业界任职。曾任麻省理工学院和哈佛大学访问科学家。发表国际顶级期刊和会议学术论文200余篇。拥有多项美国专利,其中大部分已转化进入商业产品。张晓平教授现任《IEEE信号处理汇刊 》和《IEEE图像处理汇刊 》的高级副主编(Senior Area Editor),曾任《IEEE信号处理汇刊 》、《IEEE多媒体处理汇刊》、《IEEE图像处理汇刊 》、《IEEE电路与系统视频技术汇刊》、《IEEE信号处理快报》等国际知名学术期刊的副主编。他现任IEEE信号处理学会图像视频及多维信号处理技术委员会副主席,是国际信号处理最大旗舰年会IEEE ICASSP会议2021年大会共同主席(General Co-Chair),2017和2019年IEEE全球信号和信息处理年会(GlobalSIP)金融和商业信息处理大会主席,2015 IEEE多媒体信号处理年会(MMSP2015)主席。现任IEEE国际多媒体大会(ICME)指导委员会(Steering Committee)委员。张教授曾在多个知名国际会议如ACM多媒体年会ACMMM2011, IEEE电路与系统年会ISCAS2013和ISCAS2019, IEEE图像处理年会ICIP2013, IEEE信号处理年会ICASSP2014,国际神经网络联合大会IJCNN2017应邀作教程报告(Tutorial)。2019年他被遴选为IEEE信号处理学会杰出讲座学者,任期从2020年1月到2021年12月。2020年获Ryerson大学学术科研最高奖–Sarwan Sahota Ryerson杰出学者奖。
讲座摘要:
Economic data and financial markets are intriguing to researchers working on big data and quantitative models. With rapid growth and increasing access to data in digital form, finance, economics, and marketing data are poised to become one of the most important and tangible big data applications, owing not only to the relative clean organization and structure of the data but also to clear application objectives and market demands. However, data related economic and social science studies often have different viewpoints from signal processing (SP) and artificial intelligence (AI).
This talk intends to introduce some foundational concepts in finance/economics/marketing research, from signal and data processing point of view. Some of these ideas led to Nobel Prize in Economics. We explain the different focuses between economic and social science data analysis and physical signal processing, such as co-integration and causality analysis. For example, in most physical systems using signal processing and machine learning, the causality (input/output) relationship is often known and taken for granted, but it is generally not obvious/unknown in social and economic sciences. It is critical to discriminate causalities from spurious correlations in data. We illustrate a marketing dynamic response model that uses signal processing tools to identify and catch fleeting business opportunities. We also introduce the concept of predictive analytics from probabilistic point of view. We hope to inspire signal processing/AI researchers to broaden their knowledge beyond their current areas of expertise and grasp some basics concepts and evaluation criteria in economics and social science fields.